Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 16 Núm. 1 (2025)

Topología, Lógica y Filosofía: Por un trabajo interdisciplinar

DOI
https://doi.org/10.5281/zenodo.15644617
Enviado
noviembre 2, 2024
Publicado
2025-05-30

Resumen

En este artículo se establece una panorámica histórica contemporánea entre la topología y filosofía, y los conceptos que unen a las dos áreas. Asimismo, se examinan limitaciones formales y problemas filosóficos de la semántica de mundos posibles. Posteriormente se examinan los trabajos de filósofos de la ciencia: Daniel Kostić y Thommas Mormann, ellos revindican el uso de la topología en la filosofía, específicamente en la epistemología y metafísica. Finalmente, se propone a través del texto una tesis reivindicativa del uso de la topología en la filosofía.

Citas

  1. Baltag, A., Bezhanishvili, N., Özgün, A., & Smets, S. (2022). Justified belief, knowledge, and the topology of evidence. Synthese, 200(512), 512. https://doi.org/10.1007/s11229-022-03967-6
  2. Bayart, A. (1958). La Correction de la Logique Modale du Premier et Second Ordre S5. Logique et Analyse, 1(1), 28-45. https://www.jstor.org/stable/44083329
  3. Bayart, A. (1959). Quasi-adéquation de la Logique Modale de Second Ordre S5 et Adéquation de la Logique Modale de Premier Ordre S5. Logique et Analyse, 2(6/7), 99-121. https://www.jstor.org/stable/44083456
  4. Bjorndahl, A., & Özgün, A. (2020). Logic and topology for knowledge, knowability, and belief. The Review of Symbolic Logic, 13(4), 748-775. https://doi.org/10.1017/S1755020319000509
  5. Carnap, R. (1922). Der Raum. Ein Beitrag zur Wissenschaftslehre. Kantstudien Ergän-zunghefte. PhD. Thesis. Berlin: Reuther & Reichard.
  6. Carnap, R. (1946). Modalities and Quantification. The Journal of Symbolic Logic, 11(2), 33-64. https://doi.org/10.2307/2268610
  7. Carnap, R. (1947). Meaning and Necessity. Chicago: University of Chicago Press.
  8. Cassirer, E. (1953). The Philosophy of Symbolic Forms. New Heaven: Yale Universi-ty Press.
  9. Cresswell, M. (2013, June 15-20). Carnap and McKinsey: Topics in the Pre-History of Possible-Worlds Semantics. Proceedings of the 12th Asian Logic Conference, 53-75. Wellington, New Zealand: World Scientific Publishing Company. https://doi.org/10.1142/8701
  10. Cresswell, M. (2014). The Completeness of Carnap's Predicate Logic. Australasian Journal of Logic, 11(1), 46-61. https://doi.org/10.26686/ajl.v11i1.2017
  11. Cresswell, M. (2015). Arnould Bayart’s modal completeness theorems: translated with an introduction and commentary. Logique et Analyse, 58(229), 89-142. https://www.jstor.org/stable/44085332
  12. Cresswell, M. (2016). Worlds and Models in Bayart and Carnap. The Australasian Journal of Logic, 13(1), 1-10. https://doi.org/10.26686/ajl.v13i1.3927
  13. Cresswell, M. (2019). Modal Logic before Kripke. Organon F, 26(3), 323-339. https://doi.org/10.31577/orgf.2019.26302
  14. Cresswell, M. (2020). Revisiting McKinsey's 'Syntactical' Construction of Modality. The Australasian Journal of Logic, 17(2), 123-140. https://doi.org/10.26686/ajl.v17i2.4073
  15. Haack, S. (1978). Philosophy of Logics. Cambridge: Cambridge University Press.
  16. Hintikka, J. (1969). Semantics for Propositional Attitudes. In J. Hintikka, Models for Modalities. Selected Essays (Vol. 23, pp. 87-111). Dordrecht: Springer. https://doi.org/10.1007/978-94-010-1711-4_6
  17. Hughes, G., & Cresswell, M. (1996). A New Introduction to Modal Logic. London: Routledge. https://doi.org/10.4324/9780203028100
  18. Kostić, D. (2018). The topological realization. Synthese, 196, 79-98. https://doi.org/10.1007/s11229-016-1248-0
  19. Kostić, D. (2020). General theory of topological explanations and explanatory asymmetry. Philosophical Transactions of the Royal Society B, 375, 1-8. https://doi.org/10.1098/rstb.2019.0321
  20. Kostić, D. (2022). Topological Explanations: An Opinionated Appraisal. In I. Lawler, K. Khalifa, & E. Shech (Eds.), Scientific Understanding and Representation: Model-ing in the Physical Sciences (pp. 96-115). New York: Routledge.
  21. Kostić, D. (2024). On the Role of Erotetic Constraints in Noncausal Explanations. Philosophy of Science, 91(5), 1078-1088. https://doi.org/10.1017/psa.2023.114
  22. Kostić, D., & Khalifa, K. (2021). The directionality of topological explanations. Synthese, 199, 14143-14165. https://doi.org/10.1007/s11229-021-03414-y
  23. Kostić, D., & Khalifa, K. (2023). Decoupling Topological Explanations from Mecha-nisms. Philosophy of Science, 90(2), 245-268. https://doi.org/10.1017/psa.2022.29
  24. Kripke, S. A. (1959). A completeness theorem in modal logic. The Journal of Symbolic Logic , 24(1), 1-14. https://doi.org/10.2307/2964568
  25. Kripke, S. A. (1963a). Semantical Analysis of Modal Logic I Normal Modal Proposi-tional Calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathema-tik , 9(5-6), 67-96. https://doi.org/10.1002/malq.19630090502
  26. Kripke, S. A. (1963b). Semantical Considerations on Modal Logic. Acta Philosophi-ca Fennica, 16, 83-94.
  27. Kripke, S. A. (1965). Semantical Analysis of Modal Logic II. Non-Normal Modal Propositional Calculi. In J. W. Addison, L. Henkin, & A. Tarski (Eds.), The theory of models (pp. 206-220). Amsterdam: North-Holland Publishing Company.
  28. Kripke, S. A. (1980). Naming and Necessity: Lectures Given to the Princeton University Philosophy Colloquium. (D. Byrne, & M. Kölbel, Eds.) Cambridge: Harvard University Press.
  29. Kuratowski, K. (1966). Topology. Vol. I. New York: Academic Press.
  30. Lewis, D. (1968). Counterpart Theory and Quantified Modal Logic. The Journal of Philosophy, 65(5), 113-126. https://doi.org/10.2307/2024555
  31. Lewis, D. (1973). Counterfactuals. Cambridge: Harvard University Press.
  32. Lewis, D. (1986). On the Plurality of Worlds. Oxford: Basil Blackwell.
  33. McKinsey, J. C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic, 6(4), 117-134. https://doi.org/10.2307/2267105
  34. McKinsey, J. C., & Tarski, A. (1944). The Algebra of Topology. Annals of Mathemat-ics, 45(1), 141-191. https://doi.org/10.2307/1969080
  35. Mormann, T. (2013). Topology as an Issue for History of Philosophy of Science. In H. Andersen, D. Dieks, W. J. Gonzalez, T. Uebel, & G. Wheeler (Eds.), New Chal-lenges to Philosophy of Science (Vol. 4, pp. 423-434). Dordrecht: Springer.
  36. Mormann, T. (2014). Set Theory, Topology, and the Possibility of Junky Worlds. Notre Dame Journal of Formal Logic, 55(1), 79-90. https://doi.org/10.1215/00294527-1960497
  37. Mormann, T. (2020). Topological Aspects of Epistemology and Metaphysics. In A. Peruzzi, & S. Zipoli Caiani (Eds.), Structures Mères: Semantics, Mathematics, and Cognitive Science (Vol. 57, pp. 135-152). Cham: Springer. https://doi.org/10.1007/978-3-030-51821-9_7
  38. Mormann, T. (2021). Prototypes, poles, and tessellations: towards a topological theory of conceptual spaces. Synthese, 199, 3675-3710. https://doi.org/https://doi.org/10.1007/s11229-020-02951-2
  39. Mormann, T. (2022). Topological Models of Columnar Vagueness. Erkenntnis, 87, 693-716. https://doi.org/10.1007/s10670-019-00214-2
  40. Mosterín, J. & Torretti, R, (2010). Diccionario de Lógica y Filosofía de la Ciencia. (Segunda ed.). Madrid: Alianza Editorial.
  41. Russell, B. (1915). Our Knowledge of the External World: As a Field for Scientific Method in Philosophy. Chicago and London: The Open Court Publishing Company.
  42. Russell, B. (1927). The Analysis of Matter. London: Kegan Paul, Trench, Trubner & Co. Ltd.
  43. Russell, B. (1936). On order in time. Proceedings of the Cambridge Philosophical Society, 32, 216-228.
  44. Stone, M. H. (1936). The Theory of Representation for Boolean Algebras. Transac-tions of the American Mathematical Society, 40(1), 37-111. https://doi.org/10.2307/1989664
  45. Tarski, A. (1938). Der Aussagenkalkül und die Topologie. Fundamenta Mathemati-cae, 31, 103-134. https://doi.org/10.4064/fm-31-1-103-134
  46. Tsao-Chen, T. (1938). Algebraic postulates and a geometric interpretation for the Lewis calculus of strict implication. Bulletin of the American Mathematical Socie-ty, 44(10), 737-744. https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-44/issue-10/Algebraic-postulates-and-a-geometric-interpretation-for-the-Lewis-calculus/bams/1183500884.full